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Abstract:
In this paper, the radial breathing mode (RBM) frequencies of multi-walled carbon nanotubes (MWCNTs) are 
obtained based on the multiple-elastic thin shell model. For this purpose, MWCNT is considered as a multiple 
concentric elastic thin cylindrical shells, which are coupled through van der Waals (vdW) forces between two 
adjacent tubes. Lennard-Jones potential is used to calculate the vdW forces between adjacent tubes. The RBM 
frequencies of MWCNTs predicted by the present shell model are in excellent agreement with the available 
experimental and atomistic results with relative errors less than 2.5%. The results emphasize the utility of 
multiple-elastic thin shell theory for modelling the RBM vibrational behaviour of MWCNTs.
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1. INTRODUCTION

Many of carbon nanotube (CNT) properties have 
been studied experimentally [1-3], and theoretically 
[4-10]. Raman spectroscopy has provided an 
extremely powerful tool for the characterization of 
CNT. The radial breathing mode (RBM) frequency 
is usually the strongest feature in CNT Raman 
spectra that plays a crucial role in the experimental 
determination of the geometrical properties of CNTs. 
In the RBM, all carbon atoms move coherently in the 
radial direction creating a breathing-like vibration 
of the entire tube. This feature is specific to CNTs 
and is not present in graphite [1]. Therefore, RBM 
frequencies are very useful for identifying whether a 
given material contains CNTs, through the presence 
of RBM modes, and for characterizing the CNT 
diameter distribution in the sample through the 

RBM frequency inverse proportionality to the tube 
diameter [1]. Similar conclusion has also been drawn 
for multi-walled carbon nanotubes (MWCNTs) of 
small innermost diameter less than 2 nm [2, 3].

CNTs unique stiffness, strength and low density 
could influentially affect some of the physical 
properties of composites filled with CNTs for sound 
wave absorption [11, 12] or being used as sensors and 
actuators [13], and nano-devices such as advanced 
miniaturized switchers [14]. As the MWCNTs could 
be synthesized simpler than the single-walled carbon 
nanotubes (SWCNTs), MWCNTs are cheaper than 
SWCNTs. So, MWCNTs are being used as fillers 
in the mentioned nanocomposites. It is clear that 
the effective properties of nanocomposites depend 
on properties of individual components. So, the 
study on vibrational characteristics of individual 
CNTs with appropriate model is very important. 
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Raman spectroscopy usually shows only the highest 
RBM frequency of each MWCNT in a sample of 
MWCNTs. Because the highest RBM frequencies 
could be used for identifying the innermost diameter 
of MWCNTs in CNT-based nanocomposites, the 
aim of this paper is only the prediction of the highest 
RBM frequencies of MWCNTs, theoretically. 

A MWCNT can be described as multiple layers 
of graphite crystal that are rolled up into a multiple 
concentric seamless circular cylinder. Due to the 
nanometeric dimensions of CNTs, it is difficult to set 
up controlled experiments to measure the properties 
of an individual CNT [1-3]. Furthermore, Molecular-
Dynamics methods [15] are costly and difficult, 
particularly for large-scale systems. So, continuum 
elastic mechanical models such as elastic beam models 
[4-6] and elastic shell models [7-10] have been widely 
used to study the vibrations of CNTs.
These investigations are very important to predict 
the accurate vibrational characteristics of MWCNTs. 
For this purpose, MWCNT is modeled as a multiple 
concentric elastic thin cylindrical shells, which 
are coupled through van der Waals (vdW) forces 
between two adjacent tubes. Lennard-Jones potential 
is used to calculate the vdW forces between adjacent 
layers. Afterwards, the coupled dynamic equations 
of motion have been derived according to the first 
approximation thin shell theory. Finally, the highest 
RBM frequency of different MWCNTs has been 
compared with the available experimental [2] and 
atomistic [3] results which indicated an excellent 
agreement with relative errors less than 2.5%. The 
results emphasize the utility of multiple-elastic thin 
shell theory for modelling the RBM vibrational 
behaviour of MWCNTs.

2. Modelling  of  a  MWCNT

In this study, MWCNTs are modeled as a multiple 
concentric elastic thin cylindrical shells, which are 
coupled through vdW forces between two adjacent 
tubes (see Figure 1).

Each tube is modeled as an elastic thin circular 
cylindrical shell with radius R, thickness h, and 
mass density ρ in cylindrical coordinates ( , , )z xθ , 
see Figure 2.

Figure 1:  Illustration of vdW forces between two 
adjacent tubes of a multiple shell cross section of a 

MWCNT

Figure 2: Modelling of each tube of MWCNT as 
a thin cylindrical shell in cylindrical coordinates 

system

Where x, θ  and z are the axial, circumferential 
and radial coordinates of the cylindrical shell, 
respectively. In the above figure, u, v and w are the 
shell displacements along the axial, circumferential 
and radial directions, respectively.

According to the first approximation in thin shell 
theory [16], the dynamic equations of motion for a 
cylindrical shell that are called “Love’s equations” 
are as:
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where ,  ,  ,x xN N Nθ θ and xN θ are the resultant 
forces of the middle surface of the shell; 

,  ,  x xM M Mθ θ  and xM θ  are resultant moments 
exerted on the middle surface of the shell. In above 
equation, p is the radial distributed load acted on 
the shell.
In the RBM, all carbon atoms move in phase in the 
radial direction creating a breathing-like vibration 
of the entire tube. Therefore, the RBM vibration is 
axi-symmetric in the entire tube (e. g. 0θ∂ ∂ =  and 

0x∂ ∂ = ). So, Love’s equations reduce to
2

2 ,N wp h
R t
θ ρ ∂

− + =
∂                                                                (4)

where Nθ  obtains by integrating the stress-strain 
relation 2(1 )Ew Rθσ µ= −  across the thickness h 
of the shell as

2
2 22

d ,   
(1 ) (1 )

h
h

E w Eh wN z
R Rθ µ µ−

= =
− −∫               (5)

in which E and µ  are the elastic modulus and 
Poisson’s ratio of CNT, respectively. 
Substituting equation (5) into equation (4) gives the 
governing equation for the RBM vibration of the kth 
tube (k=1, 2, …, N) of the MWCNT as

2

2 2 ,k
k k

k

wA w p h
R t

ρ ∂
− + =

∂
                                 (6)

where 2(1 )A Eh µ= −  is the stiffness coefficient 
of each layer of the MWCNT, and pk is the vdW 
pressure acted on the kth tube of MWCNT.

The vdW interaction potential can be estimated 
as a function of the interlayer spacing between 

two adjacent tubes via ( 1) ( 1) 1[ ]k k k k k kp c w w+ + += −  
(k=1, 2, ..., N-1) in which the vdW interaction 
coefficient between two adjacent tubes is given as 

( ) ( )2 2200 erg cm 0.16 ,  0.142 nmc η η= =
 

[10] 

where erg is the CGS unit of energy and 1 erg = 10-7 
joules. So,  the vdW interaction coefficient between 
two adjacent tubes in this work is considered as 
c=6.199E+19 (Pa/m).

If the vdW interaction pressure (per unit area) acted 
on the kth tube by the (k+1)th tube is indicated by 

( 1)k kp + , the relation between two pressure is as 
( )( 1) 1 ( 1)k k k k k kp R R p+ + += − . Assuming pk as the 

total pressure acted on the kth tube of MWCNT, we 
have

 3

Where x,   and z are the axial, circumferential and radial coordinates of the cylindrical shell, 
respectively. In the above figure, u, v and w are the shell displacements along the axial, circumferential 
and radial directions, respectively. 

According to the first approximation in thin shell theory [16], the dynamic equations of motion for a 
cylindrical shell that are called "Love's equations" are as: 
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where ,  ,  ,x xN N N  and xN  are the resultant forces of the middle surface of the shell; 
,  ,  x xM M M   and xM   are resultant moments exerted on the middle surface of the shell. In above 

equation, p is the radial distributed load acted on the shell. 
In the RBM, all carbon atoms move in phase in the radial direction creating a breathing-like vibration 
of the entire tube. Therefore, the RBM vibration is axi-symmetric in the entire tube (e. g. 0    and 

0x   ). So, Love’s equations reduce to 
2

2 ,
N wp h
R t
  

  

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where N  obtains by integrating the stress-strain relation 2(1 )Ew R    across the thickness h of 
the shell as 
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in which E and   are the elastic modulus and Poisson's ratio of CNT, respectively.  

Substituting equation (5) into equation (4) gives the governing equation for the RBM vibration of the 
kth tube (k=1, 2, …, N) of the MWCNT as 

2
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k
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R t

 
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where 2(1 )A Eh    is the stiffness coefficient of each layer of the MWCNT, and pk is the vdW 
pressure acted on the kth tube of MWCNT. 

The vdW interaction potential can be estimated as a function of the interlayer spacing between two 
adjacent tubes via ( 1) ( 1) 1[ ]k k k k k kp c w w     (k=1, 2, ..., N-1) in which the vdW interaction 

coefficient between two adjacent tubes is given as    2 2200 erg cm 0.16 ,  0.142 nmc    [10] 

where erg is the CGS unit of energy and 1 erg = 10-7 joules. So, the vdW interaction coefficient 
between two adjacent tubes in this work is considered as c=6.199E+19 (Pa/m). 

If the vdW interaction pressure (per unit area) acted on the kth tube by the (k+1)th tube is indicated 
by ( 1)k kp  , the relation between two pressure is as  ( 1) 1 ( 1)k k k k k kp R R p    . Assuming pk as 
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( )

( )
( )

1 12 12 2 1

2 23 21 23 3 2 12 1 2 2 1

1 ( 1) ( 1)( 2) ( 1) 1 ( 1)( 2) 2 1 1 2

( 1) ( 1) 1 1

[ ],
[ ] [ ],

        ...
[ ] [ ],

[ ].
N N N N N N N N N N N N N N N

N N N N N N N N N

p p c w w
p p p c w w c R R w w

p p p c w w c R R w w

p p c R R w w
− − − − − − − − − − − −

− − − −

= = −

= + = − − −

= + = − − −

= = − −

 (7)

International Journal of Nanoscience and Nanotechnology



140

So, the following N-coupled dynamic equations 
govern the RBM vibration deflections of the 
N-walled CNT:
 

The vdW interaction coefficient between any 
two adjacent tubes in this work is considered as 
c=6.199E+19 (Pa/m). The RBM displacements of 
the kth tube of MWCNT are of the form

( )exp ,        ( 1,  2,  ,  )k kw W i t k Nω= − =                (9)

where Wk is the radial displacement amplitude of the 
kth tube of MWCNT, and ω is the angular frequency 
of the RBM. Substituting the above equation as the 
MWCNT displacements into equation (8), gives 
the N-coupled polynomial equations in terms 
of ω. Equating the characteristic determinant of 
coefficients matrix constructed from the N-coupled 
polynomial equations to zero for the non-trivial 
solution of Wk, gives a characteristic polynomial 
equation of the order 2N. Solving the characteristic 
polynomial equation yields N positive and N 
negative roots correspond to N RBM frequencies 
of the N-walled CNT. Following other researchers 
[7, 8], the highest RBM frequency is referred to as 
mode 1, the second highest RBM frequency as mode 
2 and so on; and finally the lowest RBM frequency 
is considered as mode N.

3. Results  and  discussions

Throughout the paper, the material parameters 
of MWCNT have been considered as: in-plane 

stiffness Eh=360 J/m2, mass density ρ=2270 kg/m3, 
Poisson’s ratio µ=0.2 [8]. In experimental units, the 
RBM frequency is related to ω via RBM 2f Cω π=  
in cm-1 where 82.99792458 10  m/sC = ×  [17] is the 
velocity of light. Because, usually, only the highest 
RBM frequency of MWCNTs has a considerable 
Raman intensity and can be easily observed in 
Raman spectra, we shall focus on the highest RBM 
frequencies of MWCNTs with innermost diameter 
ranging from 0.41 to 1.7 nm. The equilibrium 
interlayer spacing between two adjacent tubes is 
considered 0.34 nm.

Figure 3. Influence of changing the MWCNT 
radius on its three highest RBM frequencies
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Figure 3 shows the influence of changing the 
radius of MWCNT on its three highest RBM 
frequencies. As it is shown in Figure 3, the RBM 
frequencies are very sensitive to the radius, R, 
of MWCNT when this geometrical property 
is extremely small. The frequency of mode 1 
monotonically decreases with increasing the 
innermost diameter of MWCNTs. As it is shown 
in Table 1, this frequency-diameter relation is 
consistent with the experimental results [2], and 
the results obtained by the atomistic model [3] 
for the same MWCNTs. Figure 3 shows that the 
sensitivity of the mode 2 and 3 to the changing of 
the MWCNT diameter is less than mode 1.

Table 1 shows the highest RBM frequencies of 
MWCNTs with innermost diameter ranging from 
0.41 to 1.7 nm with the available experimental and 
atomic results. The first column shows the MWCNT 
diameter; the second and third ones are the number 
of layers of the MWCNT and the highest RBM 
frequencies from the experimental and atomistic 
model results, respectively. The forth column shows 
the number of layers of the MWCNT in the other 
researchers’ theoretical results; the next two columns 
show the highest RBM frequencies obtained by 
considering the vdW interaction between any two 

tubes based on the multiple-elastic thin shell model 
and their error percentages in comparison with the 
results of the experimental and atomistic results (the 
third column), respectively. The next four columns 
show the highest RBM frequencies obtained only 
by considering the vdW interaction between two 
adjacent tubes based on the multiple-elastic thin 
shell model and the corresponding error percentages 
in comparison with the results of the experimental 
and atomistic results. The next column shows the 
number of layers that are considered for MWCNTs 
in this study. The last two columns show the results 
obtained based on thin shell theory in the present 
paper, and the corresponding error percentages in 
comparison with the results of the experimental and 
atomistic results. In this paper, the results obtained 
just by considering the vdW interaction between 
two adjacent tubes.

As it is shown in Table 1, the error percentages 
of the results obtained by considering the vdW 
interaction between any two tubes are more than 
the results obtained only by considering the vdW 
interaction between two adjacent tubes. Also, 
with decreasing the vdW interaction coefficient, 
the highest RBM frequencies predicted based 
on multiple-elastic thin shell theory only by 

Table 1: Comparison between the results obtained in this work and the available experimental [2], and 
atomistic model [3] results, and the other researchers’ results based on the multiple-elastic thin shell model 

[7, 8]. All error percentages have been computed relative to the second column results
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0.41 5-15 570 [2] 5-50 575.9 1.0 573.6 0.6 576.0 1.1 2-50 572.8 0.5 
0.6 5-15 392 [2] 5-50 397.1 1.3 394.5 0.6 395.0 0.8 2-50 393.0 0.3
0.84 5-15 279 [2] 5-50 288.1 3.3 285.1 2.2 286.0 2.5 2-50 282.7 1.3 
1.08 20 217 [3] 5-50 228.9 5.5 225.4 3.9 226.0 4.2 2-50 222.1 2.4 
1.2 20 199 [3] 5-50 208.8 4.9 205.0 3.0 205.0 3.0 2-50 201.1 1.1 
1.36 20 180 [3] 5-50 188.3 7.3 183.9 2.2 184.0 2.2 2-50 179.2 0.4 
1.54 20 162 [3] 5-50 171.4 8.0 166.2 2.6 166.0 2.5 3-50 160.3 1.1 
1.7 20 149 [3] 5-50 160.7 4.6 154.5 3.7 154.0 3.4 3-50 147.3 1.1 

 
Table 1 shows the highest RBM frequencies of MWCNTs with innermost diameter ranging from 

0.41 to 1.7 nm with the available experimental and atomic results. The first column shows the 
MWCNT diameter; the second and third ones are the number of layers of the MWCNT and the highest 
RBM frequencies from the experimental and atomistic model results, respectively. The forth column 
shows the number of layers of the MWCNT in the other researchers’ theoretical results; the next two 
columns show the highest RBM frequencies obtained by considering the vdW interaction between any 
two tubes based on the multiple-elastic thin shell model and their error percentages in comparison with 
the results of the experimental and atomistic results (the third column), respectively. The next four 
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considering the vdW interaction between two 
adjacent tubes are in more agreement with 
the experimental results. Therefore, it can be 
concluded that the results which are obtained 
in the present paper by considering the vdW 
interaction c=6.199E+19 (Pa/m) only between 
two adjacent tubes are in more agreement with 
the experimental and atomistic model results than 
the other researchers’ theoretical results.

4. Conclusion

This paper reported a detailed investigation on the 
highest RBM frequency of the MWCNT based on 
the multiple-elastic thin shell theory. The following 
points can be concluded:

•	 The highest obtained RBM frequencies 
of MWCNTs with innermost diameter 
ranging from 0.41 to 1.7 nm are in 
excellent agreement with the available 
experimental and atomistic model results 
with relative errors less than 2.5%.

•	 The error percentages of the results obtained 
by considering the vdW interaction between 
any two tubes are more than the results 
obtained by considering the vdW interaction 
only between two adjacent tubes.

•	 With decreasing the vdW interaction 
coefficient, the highest RBM frequencies 
predicted based on multiple-elastic thin shell 
theory by considering the vdW interaction 
only between two adjacent tubes are in 
more agreement with the experimental and 
atomistic model results.

•	 The results emphasize the utility of multiple-
elastic thin shell theory by considering the 
vdW interaction only between two adjacent 
tubes for modelling the RBM vibrational 
behaviour of MWCNTs, precisely.
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