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Abstract:
In this work, the strontium-doped lanthanum manganite- a ceramic material- used as cathode in solid oxide 
fuel cells. An impression of grinding time on the structural and thermal properties of Sr-doped LaMnO3 system 
with La1-xSrxMnO3 (x=0.2) stoichiometric ratio was investigated. The nano crystallite LSM powder with 
cubic structure was prepared by varying the milling time of planetary monomill during the mechanochemical 
method. XRD diffraction patterns confirmed that increasing milling time has effect on phase structure, 
sintering and thermal behavior of LSM. The optimum sintering temperature was determined and then thermal 
treatments were investigated with Differential Thermal Analysis (DTA) and Thermal Gravimetric Analysis 
(TGA) methods, respectively. The results of this research certainly indicated that by increasing grinding time 
as an important factor in LSM mechanochemical synthesis, the nanocrystallite size and distribution as well as 
thermal characteristics will be modified.
Keywords: Solid oxide fuel cell, Strontium-doped lanthanum manganite, Mechanochemicl synthesis, Cathode 
material, Nanocrystallite, Phase structure.
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1. INTRODUCTION

Solid Oxide Fuel Cells (SOFCs) are promising 
efficient, energy-saving, and environment-friendly 
energy conversion devices that generate electricity 
and heat. As one of the key materials of SOFC, 
strontium-doped LaMnO3, especially 20 mol% 
Sr doped LaMnO3 (La0.8Sr0.2MnO3), is currently 
the preferred cathode material because of its high 
electronic conductivity [1], good compatibility 
with the solid electrolyte, 8 mol% yttria-stabilized 
zirconia (YSZ), in the oxidizing atmosphere [2]. 
Moreover, similar coefficient of thermal expansion 
to that of YSZ for practical use, and good chemical 
and thermal stability are the other beneficial 
properties of LSM [3].

The electrical conductivity and catalytic activity of 
lanthanum manganite are considerably enhanced 
when lanthanum is partially substituted with 
strontium [4]. Lanthanum strontium manganite is 
p-type electrically conducting oxide by ABO3-type 
perovskite structure [5].
The improvement of electrochemical performances 
has been attributed to decreasing grain sizes, which 
allows spreading and growing of active sites at 
the electrolyte/electrode interface. This design 
modification is suitable for SOFC intermediate 
operating temperature. Thus, a low sintering 
temperature should be intended to take advantage 
of desirable features, such as small grain diameters 
[6].
Commonly, after LSM was produced it is 
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characterized primarily by its chemical (purity, 
homogeneity) and physical (particle size, surface 
area) properties. The ideal characteristics of an 
LSM powder for fuel cells, are the purity, with a 
perovskite structure, small average particle size and 
large surface area [7].
This paper shows that whilst these are still relevant 
criteria, the thermal and electrical properties of the 
powder must also be considered.

2. EXPERIMENTAL

MnO2, La2O3, and SrO (Merck, with purity >99%) 
were used as starting reagents. MnO2 was heated 
at 600°C for 12 hours in order to convert it into 
Mn2O3. The formation of single-phase Mn2O3 was 
confirmed by X-ray powder diffraction before its 
use. Later, the proper weight ratio of reactants: 
La2O3, Mn2O3, MnO2, and SrO were completely 
mixed in acetone liquid media with an appropriate 
stoichiometric ratio as per reaction 1 [8].

0.4(La2O3+Mn2O3)+0.2(SrO+MnO2)

= La0.8Sr0.2MnO3                           (1)

In order to investigate of the milling time effect 
on LSM phase formation a planetary monomill 
(PMV2-Tajhizceram Co.) was used for the ball 
milling. The batch of 50 g of the aforementioned 
mixture was taken into the zirconia bowl. Later, 
15-mm diameter zirconia balls were added into it 
as ball/powder ratio was 15. The rotational speed 
of the planetary monomill was 300 rpm (revolution 
per minute). 
Finally, after sampling in different grinding times 
the ground samples were calcinated at 600oC for 2 
hours in air to complete the phase formation process 
as well as the removal of the possibly absorbed 
moisture and impurities. In order to compare the 
influence of milling process on LSM ceramic 
powder properties, one of the samples was not 
subjected to the milling operation and was kept as 
the evident sample. Species were coded based on 
table 1.
All the samples were characterized by X-ray 
powder diffraction method by X-ray diffractometer 

(Philips. Pw 3710 mpd control), with curved 
graphite crystal monochromator, and using Cu-Kα 
radiations in the 2θ range from 10° to 80°. In order 
to study of the phase formation and identification, 
the obtained X-ray powder diffraction (XRD) data 
were subjected to profile fitting, before analyzing 
with the help of X’pert Highscore plus software.

Table 1: samples coding based on preparative 
parameters
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Sample code Milling rpm Milling time(hour)
S-0h-600c - 0
S-3h-600c 300 3
S-12h-600c 300 12
S-24h-600c 300 24
S-36h-600c 300 36
S-48h-600c 300 48
 

 
All the samples were characterized by X-ray 
powder diffraction method by X-ray 
diffractometer (Philips. Pw 3710 mpd control), 
with curved graphite crystal monochromator, 
and using Cu-Kα radiations in the 2θ range 
from 10° to 80°. In order to study of the phase 
formation and identification, the obtained X-
ray powder diffraction (XRD) data were 
subjected to profile fitting, before analyzing 
with the help of X’pert Highscore plus 
software. 
For more physical and morphological study of 
mechanically prepared powder particle size, 
distribution and specific surface area the BET 
test was carried out with Gemini 2375 model 
instrument (Micromeritices company). Prior to 
BET analysis, the samples were outgassed for 
24h at 150 °C. Microstructure of cathode 

powders was investigated by scanning electron 
microscopy using a S360 Cambridge 1990 
tool. Prior to this test the samples were coated 
with a thin layer of gold and the acceleration 
voltage was 20 kV, using secondary electron 
scattering. 
The differential thermal analysis–
thermogravimetry (DTA–TG) of the powder 
sample was carried out at a heating rate of 5 
oC.min−1 by a DTA–TG unit (model PL-STA 
1640, England) in air. The thermal expansion 
was monitored by means of a dilatometer tool 
(model DIL 402E Netzsch, Germany) at a rate 
of 10 oC.min−1. Dimensions of the prepared 
samples were 50×5×5 mm for length, width 
and height, respectively. 

3. RESULTS AND DISCUSSION 

3.1. Phase Formation 
The diffraction patterns of not-milled and 
milled powder samples which calcinated at 
600 oC are illustrated in Fig.1. As can be seen, 
diffracted lines of not ground powder-sample 
well accord with primary oxide ingredients as 
well as a compound of principle elements 
without any dopant (LaMn2O5). For the 
samples which milled for 12h and more, 
compared with ideal perovskite LaMnO3 
pattern (JCPDS:75-440) the diffraction peaks 
indexed well to perovskite structure with cubic 
symmetry as this phase formation process was 
completed along with grinding time increase. 
This suggested that Sr2+ was successfully 
incorporated into the A-site (Lanthanume 
situation) of the LSM lattice. Moreover, the 
presence of sharp main peak at around 32o 
degree and also decrease of noise amount 
during with milling time increase, confirm the 
single phase LSM formation. 
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principle elements without any dopant (LaMn2O5). 
For the samples which milled for 12h and more, 
compared with ideal perovskite LaMnO3 pattern 
(JCPDS:75-440) the diffraction peaks indexed 
well to perovskite structure with cubic symmetry 
as this phase formation process was completed 
along with grinding time increase. This suggested 
that Sr2+ was successfully incorporated into the 
A-site (Lanthanume situation) of the LSM lattice. 
Moreover, the presence of sharp main peak at around 
32o degree and also decrease of noise amount during 
with milling time increase, confirm the single phase 
LSM formation.
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Figure 1: X-ray powder diffraction patterns of 
S-0h(a) not milled and S-3h-600c(b), S-12h-
600c(c), S-24h-600c(d), S-36h-600c(e) and 

S-48h-600c(f) ground samples with 300 rpm which 
obviously expose sharp peaks corresponded to 

cubic structure

3.2. Crystallite size and specific surface area

The average particle size (D*
BET) was calculated 

assuming the presence of spherical particles, by 
means of the equation 2 [9]:

D*
BET = 6/(ρ.SBET)	       		             (2)

Where ρ is the theoretical density of LSM (6.6 
g.cm−3) and SBET is the specific surface area. 
As can be seen in Figure 2, the measured surface area 
has an optimum amount, where the BET amount has 
a maximum point. By grinding duration increase, 
the granulation phenomenon cause to surface area 
decrease. As the XRD broadened pattern confirm, in 
optimum case that related to 24-hour milled sample, 

the particle diameter decrease to about 50 nm 
which is the lowest particle size among the ground 
nanopowder samples.
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Figure 2: BET surface area (m2/gr) contrast to 
D*

BET (nm) for LSM ground samples

3.3. Thermal analysis

3.3.1. Thermal decomposition 
Typical thermograph of the raw precursor and 
48h-milled powder samples are depicted in Figures 
3,4, respectively. In Figure 3 that is related to not 
milled LSM powder sample, there is a 6-step weight 
loosing trend during temperature increasing. As can 
be seen in Figure 4 which is related to the DTA and 
TG graphs of 48h-milled sample, there is a gradually 
single-step weight decreasing mode.
Generally, in comparison the as received LSM 
powder sample suffers from a drastic weight loss 
around 12%, whereas 48h-ground sample exhibits 
only 4% weight loss. According to the TG curve 
in Figure 3, there is a weight increase around 
0.4% between 40-60oC which is possibly because 
of water crystallization [10], while the next 0.6% 
weight increase stage from 90-280oC could be 
related to the composition of Sr(OH)6 from primary 
SrO precursor [11]. 
The observed weight loss of 5.2% within 280-340oC 
may be due to the decomposition of La2O3[12] 
which is confirmed by an endothermic peak in DTA 
plot. The next step of weight loss which is 3.1% 
at the temperature range of 420-480oC as well as 
0.8% weight loss between 620-680oC are infered 
to a decrease in Mn ionic valency from Mn+4 to 
Mn3+ and phase transformation of MnO2 from α 
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to γ respectively [11,12]. This phase transition is 
affirmed by endothermic peak of DTA curve. The 
last weight loss of 0.5% along 720-840oC can be 
pertained to complete decomposition of carbonates 
and initiation of LSM phase formation [13]. At the 
temperature range more than 900oC there is a slight 
weight increase of 0.4% which is corresponded to 
LSM formation of unreacted substances in the not 
milled powder mixture [14].
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Figure 3: TGA and DTA curves of the not milled 
sample before subjecting to calcination

According to the DTA and TG plots which are 
illustrated in Figure 4 the weight loss trend for 
48h-milled sample includes just one step which 
gradually occurs within 60-1200oC along with 
weight loss of around 4.5%. This could suggest 
that principle decomposition and single-phase 
formation reactions are perfectly completed during 
the grinding operation as there is no peak in the 
DTA plot of this sample.

3.3.2. Thermal expansion
Figure 5 depicts the comparative dilatometric 
curves and variation mode of thermal expansion 
coefficient (TEC) for S-0h-600c and S-48h-600c 
samples. It exhibits an increase in the thermal 
expansion (ΔL/L0) with increasing temperature. 
As can be seen, up to around 400oC, the expansion 
behavior of both samples are similar, however, 
within temperature increase the not milled sample 
have a little difference with 48h-milled sample. 
It can be explained that grinding process cause an 

structural improvement in LSM lattice. As a matter 
of fact the general thermal behavior of ideally 
substituted Sr in it is alike LaMnO3 host oxide. The 
change trend of TEC (α) which is inserted in Figure 
5 indicates that before almost 700oC, the not milled 
LSM have more TEC amount while after this point 
the ground LSM sample comprises further thermal 
expansion coefficient. It elucidates that the thermal 
procedure have an optimum temperature.
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Figure 4: TGA and DTA thermograms of the 
48h-ground powder sample prior to be calcinated
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Figure 5: Thermal expansion (ΔL/L0) curves of 
the S-0h-600c (a) and S-48h-600c (b) samples for 

the temperature range of 38-1200oC and insert 
exhibits variation of the coefficient of thermal 
expansion (α) for the temperature region of 

38–1112oC

3.4. Morphology

The morphology of calcinated powders obtained 

Tamaddon and Maghsoudipour 
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at different milling times can be seen in Figure 
6. A close examine of Figure 6 reveals the milled 
samples reached fine particles with homogeneous 
distribution. Moreover, formation of small 
aggregates for all samples are obvious. 
The amount and size of these aggregates corresponded 
to BET test results increase for the powder samples 
which milled more than 24 hours. This was pointed 
out XRD patterns confirmed the formation of fine 
and well-distributed perovskite particles after 12h 
of high energy grinding as can be seen here. Also 
based on the XRD and BET examination results the 
nanocrystalline LSM samples formed during the 
mechanochemical process are surface-activated, 
and the degree of activation depends on the surface/
bulk atom ratio [8,15]. 
In principle, activation of the surface naturally 
relaxed by the agglomeration of crystallites 
concurrently. So the milled nanopowder samples 
with grinding time period longer than the optimum 

amount consist of grains with smaller crystallite 
size. As a result they have more degree of 
agglomeration.
 

4. CONCLUSION

In order to obtain the perovskite LSM phase with 
cubic symmetry by mechanochemichal method with 
rotational speed of 300 rpm, the optimum milling 
time is 36-hour. This outcome was confirmed by 
relevant high specific surface area and morphological 
study with SEM images. It is worth mentioning 
here that the grinding operation strongly affects 
on thermal decomposition of LSM. However the 
influence of this process on the thermal expansion 
of LSM was not very sensible. This concluded that, 
milling procedure could be sensibly improve the 
structural and thermal  properties of LSM without 
further chemical consideration.

International Journal of Nanoscience and Nanotechnology
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