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Abstract  
   Bis (1(3-trimethoxysilylpropyl)-3-methyl-imidazolium) copper tetrachloride tethered to colloidal silica 

nanoparticles have been used as an efficient catalyst for the preparation of 2,4-diamino-6-

arylpyrimidine-5-carbonitrile derivatives by the one-pot reaction of aromatic aldehydes, malononitrile, 

and guanidine hydrochloride under conventional heating, microwave and ultrasound irradiations. The 

catalyst was characterized by 
1
H NMR spectroscopy, dynamic light scattering (DLS), scanning electron 

microscope (SEM), energy dispersive spectroscopy (EDS) and thermogravimetric analysis (TGA).  The 

remarkable advantages of this methodology are easy work-up, short reaction times, high to excellent 

product yields, operational simplicity, low catalyst loading and use of ultrasonic irradiation as a 

valuable and powerful technology. 

Keywords: Pyrimidine, Heterogeneous catalyst, Ionic liquid, Colloidal silica nanoparticles, 

Microwave, Ultrasound irradiation. 

 

1. INRODUCTION  

   Pyrimidines constitute a significant 

family of heterocyclic compounds for their 

potential pharmaceutical applications 

including antihypertensive [1], antimicrob-

ial [2,3], antitumor [4], antimalarial [5], 

antioxidant [6] protein Kinase inhibitors 

[7] and antagonists of GPR40 [8]. 

Therefore, the enlargement of beneficial 

ways for the preparation of pyrimidines is 

of great interest. A number of ways have 

been increased for the synthesis of 

pyrimidines in the presence of catalysts 

such as sodium acetate [9], Bi(NO3)3.5H2O 

[10], NaOH [11,12] CuO microspheres 

[13] and K2CO3 [14]. Despite the 

availability of these ways, there remains 

adequate scope for the use of an efficient 

procedure for the preparation of pyramid-

ines. The completion of the reactions under 

conventional heating conditions requires 

several hours and the yields are low. The 

essential concern for the progression of 

high-throughput procedures is the rate of 

the applied reactions. In this regard, the 

application of microwave and ultrasound 

irradiations has been proven to be very 

beneficial. Microwave and ultrasound 

irradiations are used for a diversity of 

organic syntheses owing to short reaction 

times, easy workup and excellent yields 

[15-18]. The practical rate acceleration 

upon microwave is owing to material–

wave interactions leading to thermal 

effects. The reaction is heated from the 

inside since the microwave energy is 

transferred immediately to the reagents. 

The solid catalysts absorb the microwave 

energy; consequently they can serve as an 

internal heat source for the reactions [19-

20]. Ultrasound irradiation has been 

developed to hasten the chemical reactions 

derived by the form, growth, and implosive 

collapse of bubbles in a liquid. Collapsing 

of bubbles produce high temperatures and 



134                                                    Alavi and Safaei-Ghomi 

pressures [21-22]. Compared to conven-

tional heating which makes thermal energy 

in the macro system, ultrasound irradiation 

is able to activate numerous reactions by 

the activation energy in micro environment 

[23]. Multi-component reactions (MCRs) 

constitute a very powerful tool to 

synthesize various and complex 

heterocyclic compounds [24,25]. In this 

study, we report the use of bis (1(3-

trimethoxysilylpropyl)-3-methyl-imidazo- 

lium) copper tetrachloride tethered to 

colloidal silica nanoparticles as an 

effective catalyst for the preparation of 

arylpyrimidines by the multi-component 

reaction of aromatic aldehydes, 

malononitrile and guanidine hydrochloride 

under different conditions (Scheme 1).  

 

 
 

Scheme 1. Synthesis of pyrimidines. 

 

2. EXPERIMENTAL 

2.1. Materials and Apparatus 

   DLS was accomplished using a Malvern 

Zetasizer Nano-S. The thermogravimetric 

analysis (TGA) curves are recorded using a 

V5.1A DUPONT 2000. To study the 

morphology and particle size of NPs, FE-

SEM analysis and EDS spectrum of the 

products was visualized by a Sigma 

ZEISS.  

 

2.2. Preparation of Ionic Liquid/Nano-

Colloidal Silica 

   0.098 mL of nano-colloidal silica 

(LUDOX SM colloidal silica 30 wt.% 

suspension in H2O) was diluted in 3 mL of 

deionized water, and 0.0018 mol of 1-(3-

trimethoxysilylpropyl)3-methylimidazo- 

lium chloride (IL) was added slowly with 

continuous stirring during 1 hour. Then, 

150 mg of CuCl2.2H2O was added and 

refluxed for 24 h. After 24 h, IL 

functionalized nano-silica was separated 

by centrifugation and rinsed with methanol 

for four times, then, IL/Cu
2+

/SiO2 was 

dried by lyophilization/freeze-drying. The 

purity of the resultant IL/Cu
2+

/SiO2 was 

confirmed using 
1
H NMR spectrum. The  

Cu loading was estimated using XRF to be 

4.7 wt% 

 

2.3. General Procedure for the 

Preparation of Pyrimidines (4a-h)  
   A mixture of aldehydes (1 mmol), 

malononitrile (1 mmol), guanidine 

hydrochloride (1 mmol), solvent 

EtOH:H2O (5:5) and nanocatalyst was 

subjected under different conditions. After 

supplementation of the reaction (TLC), 

ethyl acetate was added. The catalyst was 

insoluble in ethyl acetate and it could 

therefore be recycled by an easy filtration. 

The solvent was evaporated and the solid 

obtained recrystallized from ethanol to 

afford the pyrimidines. 

 

2.4. Spectral Data 

   2,4-diamino-6-phenylpyrimidine-5-

carbonitrile (4a): M. p. 237-239 °C. IR 

(KBr): 

   3401, 3358 (NH2), 2225 (CN) cm
-1

. 
1
H 

NMR (400 MHz, [D6]DMSO): δ (ppm):
 
 

7.71-7.83 (4H, 2NH2), 7.94-7.99 (3H, m, 

ArH), 8.31-8.38 (2H, m, ArH). 
13

C NMR 

(100 MHz, [D6]DMSO): δ (ppm): 79.08, 

117.84, 128.04, 128.06, 130.14, 137.04, 

162.88, 164.92, 169.34. Analysis for 

C11H9N5: calcd. C 62.55, H 4.29, N 33.16; 

found C 62.44, H 4.23, N 33.12. 

 

   2, 4- diamino – 6 - ( 4 – chloro phenyl ) 

pyrimidine-5-carbonitrile (4b): M. p. 265-

267 °C. IR (KBr): 

   3435, 3164 (NH2), 2196 (CN), 1628, 

1697, 1522 cm
-1

. 
1
H NMR (400 MHz, 

[D6]DMSO): δ (ppm): 7.65 (4H, 2 NH2), 

7.96 (2H, m, ArH), 8.45 (2H, m, ArH). 
13

C 

NMR (100 MHz, [D6]DMSO): δ (ppm):
 
 

76.35, 118.23, 128.75, 130.48, 135.52, 

136.33, 163.38, 165.46, 168.64. Analysis 

for C11H8ClN5: calcd. C 53.78, H 3.28, N 

28.51; found C 53.65, H 3.20, N 28.45. 

 

http://www.sciencedirect.com/science/article/pii/S1381116914004208
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   2,4-diamino-6-(4-bromophenyl) pyrim-

idine-5-carbonitrile (4c): 

   M. p. 260-262 °C. IR (KBr): 3422, 3299 

(NH2), 2187 (CN), 1636, 1601, 1484 cm
-1

. 
1
H NMR (400 MHz, [D6]DMSO): δ (ppm):  

6.84-6.91 (4H, 2 NH2), 7.03-7.05 (2 H, J = 

8 Hz, ArH), 7.08-7.12 (2 H, J = 8 Hz, 

ArH). 
13

C NMR(100 MHz, [D6]DMSO): δ 

(ppm):
 

76.13, 118.38, 128.72, 130.41, 

135.59, 136.23, 163.17, 165.32, 168.52. 

Analysis for C11H8BrN5: calcd. C 45.54, H 

2.78, N 24.14; found: C 45.46, H 2.64, N 

24.05. 

 

2,4-diamino-6-(4-methoxyphenyl) 

pyrimidine-5-carbonitrile (4d):  

   M. p. 236-238 °C. IR (KBr): 3387, 3324, 

3283, 3205 (NH2), 2201 (CN), 1646, 1482 

cm
-1

. 
1
H NMR (400 MHz, [D6]DMSO): δ 

(ppm):
 
  3.59 (3H, s, OCH3), 7.58-7.61 

(4H, 2 NH2), 7.32 (2 H, m, ArH), 8.34 

(2H, m, ArH). 
13

C NMR (100 MHz, 

[D6]DMSO): δ (ppm): 54.32, 79.19, 

113.46, 117.93, 125.67, 128.13, 160.21, 

164.92, 167.40, 169.33. Analysis for 

C12H11N5O: calcd. C 59.74, H 4.60, N 

29.03; found C 59.64, H 4.45, N 28.96. 

2, 4- diamino -6 – p – tolyl pyrimidine -5 -

carbonitrile (4e):  

   M. p. 255-257 °C, IR (KBr): 3425, 3324, 

3216 (NH2), 2193 (CN), 1638, 1601, 1512 

cm
-1

. 
1
H NMR (400 MHz, [D6]DMSO): δ 

(ppm): 2.08 (3H, s, CH3), 7.52-7.63 (4H, 2 

NH2), 7.95-7.97 (2H, m, ArH), 8.03-8.08 

(2H, m, ArH). 
13

C NMR (100 MHz, 

[D6]DMSO): δ (ppm):
 

  21.94, 80.73, 

118.58, 128.58, 130.62, 134.82, 140.54, 

163.46, 165.55, 169.69. Analysis for 

C12H11N5: calcd. C 63.99, H 4.92, N 31.09, 

found C 63.85, H 4.83, N 31.15.  

2, 4 – diamino – 6 - (2, 6-dichlorophenyl) 

pyrimidine-5-carbonitrile (4f):  

   M. p. 275-276 °C, IR (KBr):   3405, 

3348, 3306 (NH2), 2184 (CN), 1644, 1618 

cm
-1

. 
1
H NMR (400 MHz, [D6]DMSO): δ 

(ppm) =
 
  6.85-6.92 (4 H, 2 NH2), 7.06-

7.10 (3H, m, ArH);
 13

C NMR(100 MHz, 

[D6]DMSO): δ (ppm):
 
  77.03, 118.17, 

127.34, 128.55, 130.21, 133.45,  163.39, 

167.39, 168.55. Anal. for C11H7Cl2N5:  

calcd. C 47.17, H 2.52, N 25.00; found C 

47.09, H 2.46, N 24.84. 

 

   2 , 4 – diamino – 6 - (2 - chlorophenyl) 

pyrimidine-5-carbonitrile (4g):  

   M. p. 232-235 °C, IR (KBr): 3478, 3315, 

3236 (NH2), 2193 (CN), 1694, 1581 cm
-1

. 
1
H NMR (400 MHz, [D6]DMSO): δ (ppm):

 
  

6.38-6.43 (4H, 2 NH2), 7.52 (2H, m, ArH), 

7.61 (2H, m, ArH). 
13

C NMR (100 MHz, 

[D6]DMSO): δ (ppm):
 

78.44, 117.85, 

127.58, 128.48, 128.92, 129.93, 130.64, 

133.20, 164.70, 166.75, 169.47. Anal. for 

C11H8ClN5: calcd. C 53.78, H 3.28, N 

28.51, found C 53.62, H 3.16, N 28.42. 

 

2,4-diamino-6-(3-methylphenyl) 

pyrimidine-5-carbonitrile (4h):  

   M. p. 225-227 °C. IR (KBr):  3452, 3354 

(NH2), 2196 (CN), 1695, 1569 cm
-1

. 
1
H 

NMR (400 MHz, [D6]DMSO): δ (ppm):
 
  

2.36 (3H, s, CH3), 7.08-7.14 (4H, 2 NH2), 

7.36-7.38 (2H, d, J = 8 Hz), 7.79-7.81 (2H, 

d, J = 8 Hz). 
13

C NMR (100 MHz, 

[D6]DMSO): δ (ppm):
 

  23.85, 78.53, 

117.85, 124.48, 129.22, 129.34, 131.23, 

134.61, 137.54, 164.34, 166.76, 168.43. 

Anal. for C12H11N5: calcd. C 63.99, H 

4.92, N 31.09; found C 63.83, H 4.86, N 

30.94. 

3. RESULTS AND DISCUSSION 

3.1. Characterization of the 

Nanocatalyst 

   Figure 1a and 1b exhibit the 
1
H NMR 

spectra for the 1(3-trimethoxy 

silylpropyl)3-methyl-imidazolium chloride 

and bis (1(3-trimethoxysilylpropyl) 3-

methyl-imidazolium) copper tetrachloride 

tethered to silica nanoparticles in DMSO, 

respectively. The spectra of both materials 

are consistent with anticipated results for 

untethered and silica-tethered
 
ionic liquids. 

   Figure 2 displays FESEM image of bis 

(1(3-trimethoxysilylpropyl)3-methylimi- 

dazolium) copper tetrachloride tethered to 

silica nanoparticles (IL/nano-colloidal 

silica). It is apperceived that the particles 

are aggregated and glued with very large 

and continuous aggregates observed. 
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   To investigate the size distribution of 

nanoparticle [26, 27], dynamic light 

scattering were demonstrated in Figure 3.  

Size distribution is centered at 42.5 nm.  

   The elemental compositions of the 

nanoparticles were investigated by Energy 

Dispersive Spectroscopy. EDS corrobo-

rated the attendance of Si, O, N, C, Cl and 

Cu in the compound (Figure 4). 

   Thermogravimetric analysis studies the 

thermal properties of the ionic liquid of 

untethered to SiO2 and silica-tethered
 
ionic 

liquids. The curve displays a weight loss 

about 36.5% for ionic liquid@nano-

colloidal silica from 230 to 540 ºC, 

resulting from the demolition of organic 

spacer annexed to the nanoparticles (Fig 5) 

   FT-IR of bis   (1(3-trimethoxysilyl 

propyl)-3-methylimidazolium) copper 

tetrachloride tethered to colloidal silica 

nanoparticles is shown in Figure 6. The 

absorption peak at 3436 cm
-1

 related to the 

stretching vibrational absorptions of O-H. 

The bands at 467, 1078, 1636 and 3425 

cm
-1

 are the characteristic absorptions of 

SiO2, which indicates the evidence for the 

formation of a silica shell. The increase of 

the bands at 1572 cm
-1

 provides a direct 

indication of the existence of the N-H 

bending vibration. 

 

3.2. Catalytic Behaviors of 

Nanoparticles for the Synthesis 

Pyrimidines 

 

   Initially, we concentrated on evaluation 

of diverse catalysts in the reaction of 

benzaldehyde, malononitrile, guanidine 

hydrochloride as a pattern reaction. Yields 

were determined by Na2CO3, Et3N, nano-

Fe3O4, nano-CuI, nano-CuO, nano-ZnO 

and ionic liquid@nano-colloidal silica and 

the results are shown in Table 1. When the 

reaction was performed by ionic liquid 

@nano-colloidal silica as the catalyst, the 

products were generated in good yields. In 

this research, microwave and ultrasound 

irradiations are utilized as green techniques 

for synthesis of pyrimidines. When the 

catalysis was carried out under microwave 

and ultrasound irradiations, the reaction 

rate rise extremely. 

 

 
 

Figure 1. (a) 
1
H NMR spectrum of 1(3-

trimethoxysilylpropyl)-3-methyl-imidazoli -

um chloride and (b) bis (1(3-

trimethoxysilylpropyl)-3-methyl-imidazoli -

um) copper tetrachloride tethered to silica 

nanoparticles (nanocatalyst) in dimethyl 

sulfoxide (DMSO). 

 

 
Figure 2. FE-SEM image of nanocatalyst. 



International Journal of Nanoscience and Nanotechnology                    137 

 
Figure 3. DLS of nanocatalyst. 

 

 
 

Figure 4. EDS of nanocatalyst. 

 

   The best results were obtained under 

ultrasound irradiations (40 W) in ethanol: 

water (5:5) and found that the reaction 

gave satisfying results by of ionic liquid@ 

nanocolloidal silica at 8 mg which gave 

good yields of products (Table 1). 

 
 

Figure 5. TGA of IL and nanocatalyst. 

 

   We turned to explore the efficacy of the 

catalyst by different aromatic aldehydes 

and the results are summed up in Table 2. 

A mechanism for the reaction is outlined in 

Scheme 2. The reaction occurs via initial 

formation of the cyano olefin A from the 

condensation of malononitrile and aryl 

aldehyde, which is itself activated by the 

catalyst. The second step is followed by 

Michael addition, cycloaddition, isomer-

ization, and aromatization to afford the 5-

pyrimidinecarbonitriles. The catalyst 

activate the C=O and C≡N groups for 

better reaction with nucleophiles. 

 
Figure 6. FT-IR of nanocatalyst. 
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Scheme 2. Formation mechanism of 5-pyrimidinecarbonitriles. 
 

Table 1. Optimization of reaction conditions using different catalysts.
 a
 

Entry Solvent Conditions Catalyst amount Time (min) Yield%d 

1 H2O reflux Et3N 10 mol% 300 38 

2 EtOH reflux Na2CO3 5 mol% 300 25 

3 EtOH:H2O (5:5) reflux nano-CuI 10 mol% 180 48 

4 EtOH:H2O (5:5) reflux nano-Fe3O4 5 mol% 180 51 

5 EtOH:H2O (5:5) reflux nano-CuO 10 mol% 150 62 

6 EtOH:H2O (5:5) reflux nano-ZnO 7 mol% 150 64 

7 EtOH:H2O (5:5) reflux IL@ nano-colloidal silica 30 mg 90 80 

8 EtOH:H2O (5:5) MWI b(400 W) IL@ nano-colloidal silica 10 mg 15 84 

9 EtOH:H2O (5:5) MWI (400 W) IL@ nano-colloidal silica 15 mg 15 87 

10 EtOH:H2O (5:5) MWI (400 W) IL@ nano-colloidal silica 20 mg 15 87 

11 EtOH:H2O (5:5) MWI (300 W) IL@ nano-colloidal silica 20 mg 15 79 

12 EtOH:H2O (5:5) MWI (500 W) IL@ nano-colloidal silica 20 mg 15 86 

13 EtOH:H2O (5:5) US c (40 W) IL@ nano-colloidal silica 6 mg 10 90 

14 EtOH:H2O (5:5) US (40 W) IL@ nano-colloidal silica 8 mg 10 93 

15 EtOH:H2O (5:5) US (40 W) IL@ nano-colloidal silica 10 mg 10 93 

16 EtOH:H2O (5:5) US (30 W) IL@ nano-colloidal silica 10 mg 10 85 

17 EtOH:H2O (5:5) US (50 W) IL@ nano-colloidal silica 10 mg 10 93 

18 EtOH:H2O (5:5) MWI (500 W) ——— —— 25 15 
a Reaction conditions: benzaldehyde (1 mmol), malononitrile (1 mmol), and guanidine hydrochloride (1 mmol)  
b MWI: Microwave irradiations  c Ultrasound irradiations    d Isolated yield 

 

Table 2. Synthesis of pyrimidines using IL@nano-colloidal silica. 
 

m.p. (°C) [lit.] 

 

m.p. (°C) 

Yieldc

% 

US 

Time 

(min) 

USb 

Yieldc

% 

MWI 

Time 

(min) 

MWIa 

 

Ar 

 

Product 

 

Entry 

237-239 [28] 237-239 93 10 87 15 C6H5 4a 1 

265-266 [28] 265-267 98 10 92 15 4-Cl-C6H4 4b 2 

260-262 [28] 260-262 98 10 92 15 4-Br-C6H4 4c 3 

236-238 [28] 236-238 88 15 81 20 4-OMe-C6H4 4d 4 

255-257 [28] 255-257 90 15 85 20 4-Me-C6H4 4e 5 

—— 275-276 95 10 89 15 2,6-di-Cl-C6H4 4f 6 

—— 232-235 94 10 88 15 2-Cl-C6H4 4g 7 

—— 225-227 91 10 85 15 3-Me- C6H4 4h 8 

—— 218-220 92 10 87 15 furan-2-carbaldehyde 4i 9 

—— 222-224 90 10 86 15 thiophene-2-carbaldehyde 4g 10 

a Microwave irradiations (400 W) and15 mg of catalyst b Ultrasound irradiations (40 W), and 8 mg of catalyst  c Isolated yield 
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4. CONCLUSIONS 

   In conclusion, we have developed an 

effective way for the synthesis of pyrim-

idines using nanoparticles as excellent 

catalysts under different conditions. The 

advantages of this way are short reaction 

times, high to excellent product yields, 

operational simplicity, little catalyst 

loading and use of ultrasonic irradiations 

as a green technology. 
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