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Abstract 
   During past decade the AFM based nanomanipulation has been focus of attention as the promising 

nano fabrication approach. The main challenge in this process is the real-time monitoring. 

Consequently, the dynamic models have been proposed as a solution to the existing challenge. In the 

modeling approach the magnitudes of the forces are proportional to the stiffness coefficients of 

cantilevers. The precise calculation of these coefficients has been introduced in numerous works. The 

proposed stiffness coefficients for the V-shaped cantilevers fail to present in all commercial cantilever 

geometry. The geometrical deviation has a considerable impact on the magnitude of stiffness coefficients. 

Therefore, in this paper the existing model has been modified to include the commercial cantilever and 

take into account the effect of geometry variation. FEM simulation has been used to investigate the effect 

of geometry change and the results of these simulations have been exerted to the model which resulted in 

proposed comprehensive model. The proposed new stiffness model covers a wide range of commercial V-

shape cantilevers and makes the process more practical. 
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1. INRODUCTION 

Atomic Force Microscope (AFM) is one of 

the primary instruments for investigation 

of surface topographies; however, it can 

also act as a nanomanipulator to push nano 

particles and manufacture nano structure; 

thus, it is very important to know the 

dynamics of the AFM in order to achieve a 

reliable and efficient manipulation process 

[1]. In the controlled manipulation of 

nanoparticles, tip of cantilever pushes the 

particle till it reaches the desired location. 

Throughout the process of manipulation by 

the AFM, the manipulation forces are 

measured based on the deformation of the 

cantilever. Therefore, to have a successful 

process, it is vital to measure spring 

constants precisely. 

   One of the parameters involved in the 

accuracy and precision of nanoparticles 

displacement operations is the stiffness 

coefficient of cantilevers. The modeling of 

stiffness coefficient for rectangular, V-

shaped and dagger-shaped cantilevers, has 

been studied by innumerous researches. 

Experimental, numerical and theoretical 

techniques have been applied to formulate 

the stiffness models. In this paper, a 

comprehensive stiffness model for 

practical V-shaped cantilevers has been 

introduced. 

   The computation of static deformations 

of cantilever plates is a fundamental 

principle in the use of atomic force 

microscope (AFM). Static test methods 

have already been considered for obtaining 

a cantilever’s stiffness coefficient. In one 

method, a mass is hung from the free end 

of the cantilever and the static 

displacement is measured. Then by using 

the force-displacement relationship, the 

normal stiffness coefficient of every 

cantilever with arbitrary shape is 
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determined [2]. Also, the displacement of 

the cantilever tip is determined comparing 

with a reference cantilever, and the normal 

stiffness coefficient of the considered 

cantilever is obtained [3-6]. By using the 

plate deformation theory, Sader and White 

presented approximate formulas for the 

static displacement of cantilevers and they 

evaluated the obtained results by the 

theoretical solution through the finite 

element method [7]. Using the dynamics of 

added mass to cantilever and the resonant 

frequency and analysis of thermal noise in 

a body are the dynamic and non-

destructive testing methods that are used 

for finding the normal stiffness of 

cantilevers with arbitrary geometries [8-

11]. 

   In another technique, the theory of 

parallel beam approximation (PBA) has 

been used. Despite its limitations, because 

of its simplicity of analytical computations, 

this method is commonly used in finding 

the spring constant of the V-shaped 

cantilever in the atomic force microscope 

[12]. Different methods of calibration of 

AFM cantilevers with respect to accuracy 

and precision have been compared [13, 

14]. Neumeister offered an analytical 

model for determining the longitudinal, 

lateral and normal stiffness coefficients of 

a V-shaped cantilever and compared the 

results with the values obtained from the 

finite element method and showed that the 

presented equations are very accurate for 

determining the stiffness coefficients for 

the cantilever of specific geometry [15]. 

Green and Sader have attempted to 

improve the accuracy of the V-shaped 

cantilever’s stiffness coefficients [16]. 

Regarding the stiffness coefficients of the 

V-shaped cantilever, Clifford and Seah 

have concentrated more on the cantilever’s 

triangular section [17]. 

   Sader et al. employed the hydrodynamic 

functions in experiments to calculate the 

stiffness values of nonrectangular and 

irregular cantilevers which are actually 

used in practice [18]. In recent research 

works, Korayem and Daeinabi investigated 

the V-shaped, rectangular and dagger-

shaped cantilevers and explored the effects 

of all the influential factors such as 

thickness, width, length and tip-to-free end 

distance of the ideal cantilevers on the 

stiffness coefficients in the main directions 

[19, 20]. The stiffness of V-shape 

cantilever has been studied using an 

experimental setup by Rui et.al [21]. The 

modeling of V-shape cantilever and its 

effect on critical forces on manipulation of 

biological particles has been studied by 

Daeinabi et.al [22]. The effect of piezo 

layers on stiffness and dynamic has been 

investigated by Koreyem and Ghaderi [23]. 

The stiffness coefficients model of V-

shaped cantilevers is limited to the ideal 

form so in this paper the exciting model 

has been improved to present the model for 

different from of V-shaped cantilevers. 

Due to the analytical model restrictions, 

FEM simulations have been used to 

develop the new model. 

   In this paper, a general comprehensive 

model for stiffness coefficients has been 

developed. The stiffness coefficients of V-

shaped cantilevers in different geometries 

are obtained using the FEM method. These 

coefficients are then compared with the 

values obtained in analytical reports and 

finally by using the correction coefficients, 

the modeling of stiffness coefficients is 

improved. 

 

 
Figure.1.The V-shaped cantilever used in 

the AFM consists of the triangular section 

(I) and two oblique rectangular beams (II) 

[15]. 
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2. MODELLING THE FORCES 

APPLIED ON THE V-SHAPED 

CANTILEVER  

   In this section, by using the model of a 

V-shaped cantilever, the deformations of 

the cantilever under the effect of force is 

investigated and a 3D model is presented. 

In this analysis, three forces are applied to 

the probe tip along the three X, Y and Z 

directions (Figure.1) [15, 19]. 

 

2.1. Modeling of the normal stiffness 

coefficient ( Kz ) 

   Considering the method conducted by 

Neumeister, the normal stiffness 

coefficient of the cantilever (in Z direction) 

will be as follows [15,19]: 
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   Where  , w  and d  respectively are 

the half of the angle of tip, the width of the 

two bases and distance from end of the 

cantilever, IL  is the length of the 

cantilever’s triangular plate,   is Poisson's 

ratio,
 IZ

 
is the deformation of the 

triangular plate (I), ,Z    
are the 

deformation and the bending angle in the  

junction of the two parts (II&I), 

respectively and =2[ tan( )- ]b L w ,
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2.2. Modeling of the cantilever’s lateral 

stiffness coefficient ( Kx ) 

  The spring constant of the V-shaped 

cantilever in the X direction is calculated 

from the bending and twisting caused by 

force Fx and the bending stiffness 

resulting from this force is obtained as 

follows [15,19]: 
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The rotation of the triangular plate around 

the X axis which is produced by moment T 

( tipT Fx L  ) is as follows: 
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I  
and II  

indicates the rotation of the 

triangular plate (I) and oblique beams (II). 

The twisting stiffness becomes: 

( )

T
K 

  




; and total lateral stiffness 

will be as follows: 
 

2.3. Modeling of the cantilever’s 

longitudinal stiffness coefficient ( Ky ) 

   Finally, the effect of the force in the Y 

direction ( Fy ) is presented. The 

longitudinal deformation of the cantilever 

has been disregarded, because it is very 

small displacement; so only the coefficient 

of stiffness resulting from net moment 

tipM Fy L   due to force Fy  along the 

Y axis is considered [15, 19]: 
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In the above relation I  and II  are the 

rotations of the triangular plate and the two 

oblique beams, respectively. 
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3. INVESTIGATING THE NEW 

GEOMETRICAL MODELS 

   In this paper, the finite element 

simulation has been employed to obtain the 

static displacements. As it is demonstrated 

in Figure2 the X parameter varies between 

0 to 50 m . Then, the force applied on the 

tip of the cantilever and the constraints 

applied to the other end. Using the 

deformation results and applied forces, the 

stiffness coefficients ( Kx , Ky  and Kz ) 

have been obtained (3D, 20 node structural 

element has been used for FEM 

simulation). To calculate the cantilever 

stiffness coefficients in the three directions 

of X, Y and Z, the forces of Fx  , Fy  and 

Fz  are respectively applied on the tip of 

the V-shaped cantilever and the static 

displacements in these three directions are 

obtained using FEM method. Now, since 

the displacement is equal to (
K

F
), by 

having the values of the force and the 

displacement, the stiffness coefficients of 
Kx , Ky  and Kz are determined.    

Considering the geometrical variations in 

the cantilever according to Fig. 2, the 

changes of stiffness coefficients Kx , Ky  

and Kz  have been presented (Fig. 2) 

relative to the other stiffness coefficients, 

the lateral stiffness coefficient Kx  is 

highly sensitive to the changes of  the 

geometrical variations. Also, as it has been 

pointed out, stiffness coefficient Kz  has a 

lower sensitivity to the geometrical 

changes of the V-shaped cantilever [7]. 

The effects of variation in thickness, length 

and width have also been investigated 

using FEM method. For the ideal 

cantilever (X=0) the result of FEM 

simulation in X, Y and Z directions are in 

harmony with Neumeister model. 

However, the model failed to estimate the 

accurate stiffness coefficient with the 

change in cantilever geometry (parameter 

X) but as it is demonstrated in Figs. 3 and 

4 the rate of change in stiffness coefficient 

for both FEM method and the modeling, 

are similar [15] 
 

4- VALIDATING THE MODELING 

OF FORCES APPLIED ON THE 

CANTILEVER 

   In order to validate the presented 

simulation, a finite element model of the 

V-shaped cantilever with the dimensions 

shown in Table 1 has been used. For 

validation purposes, the results obtained 

from this simulation are compared with 

those of the Neumeister and Ducker’s 

model. 
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Figure2. The presented model, Geometrical changes of the finite element modeling and 

changes of Kx , Ky  and Kz  versus X  

 

 
Figure3. Stiffness coefficients of variation for the cantilever thickness (X is in terms of micro-

meter) 
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Figure4. Stiffness coefficients of variation for the cantilever width (X is in terms of micro-

meter) 

 

Table1. Geometrical values and mechanical properties of the V-shaped cantilever 

Geometric features Physical features 

 L  W t d α E Ν 

4.2(µm) 323(µm) 20(µm) 0.6(µm) 12(µm) 28(Deg.) 143(G.Pa) 0.33 

 

 
Figure5. Comparison between force-displacement diagrams along the X, Y and Z direction 

obtained by the analytical and finite element methods 

 

   Considering the force-displacement 

diagrams for the ideal V-shaped cantilever 

in Fig. 5, it is observed that the X-direction 

displacements obtained by the analytical 

and finite element methods are identical. 

Regarding the force-displacement diagram 

along the Y direction, the two diagrams 

have a slight difference, which could be 

due to not considering the cantilever’s 

longitudinal deformation in the Y 

direction. It is also observed that the two 

diagrams in the Z direction are in harmony. 
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5. CORRECTION FACTORS 

DETERMINATION 

   Dividing the stiffness coefficient resulted 

from FEM simulation and ideal stiffness 

coefficient, the correction factors for the 

cantilever in three directions are depicted 

in Figure. 6. These correction factors are 

dimensionless (X is the geometry 

parameter presented in Figure. 1). 
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   To make the proposed dimensionless 

correction factor, (X/b) has been used as 

the variable, and a first, second and third 

order polynomials have been proposed to 

approximate the result in Figure. 6. These 

correction factors are used as multiplier 

terms to the stiffness values obtained by 

Neumeister and Ducker for ideal 

cantilevers and yield a new comprehensive 

model, which is feasible for practical V-

shaped cantilevers. The new 

comprehensive model for practical V-

shaped cantilevers, with respect to 

geometrical changes (equivalent to the 

changes in the value of X ), are as follows 

(b is cantilever width and X is the 

changing geometrical parameters (shown 

in Figures 1 and 2, respectively)). 

Similarly, the corrected factors are 

multiplied by the longitudinal stiffness 

coefficient ( Ky ) and normal stiffness 

coefficient ( Kz ), respectively, and yield 

geometry-dependent stiffness coefficients 

model. 
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   Finally, according to Figure. 7, the new 

stiffness coefficients in three main 

coordinate directions have been presented 

with respect to geometrical changes and 

compared with the results obtained from 

the FEM simulation.For stiffness 

coefficient Kx , the value obtained in the 

ideal case ( 0X  ), the data obtained by 

the finite element method and by equation 

(14) are almost identical. As is observed in 

Figure. 7, the values of Kx  are higher 

relative to the other two stiffness values. 

For the new Ky , at 25X m , the 

changes occur with a mild slope, and for a 

larger geometrical change, we will witness 

a high sensitivity to this geometrical 

parameter. In the proposed Kz  a minor 

change in stiffness has been observed. 
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Figure6. Correction factor for stiffness coefficient Kx , Ky  and Kz  

 

 
Figure7.Comparison between the modified stiffness coefficient of Kx , Ky , Kz  and the result 

obtained from the finite element analysis 

 

 

   As is observed, the stiffness values 

obtained from the new theory correlate 

very closely with the data obtained from 

the finite element approach (there is a 

minor deviation which is in acceptable 

limits); consequently, both results are in 

harmony. The gaps formed in the diagrams 

are due to FEM simulation errors and also 

the assumptions in the theoretical formulas 

which can be neglected. 

6. CONCLUSION 

   The real-time monitoring limitation is the 

most important barrier in AFM based nano 

manipulation. Consequently, to develop a 

practical manipulation strategy, modeling 

and simulation of the process have been 

heavily investigated in numerous 

researches. For a successful manipulation 

by the means of AFM nano robot, it is of 

great importance to have an accurate 

dynamic model and to have precise 
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dynamic model, stiffness coefficient 

should be determined accurately. 

   The cantilever geometry varies as a 

result of existing manufacturing errors in 

commercial cantilevers which have a huge 

impact on cantilever stiffness. Based on 

the simulations 44%, 23% and 31% change 

of Kx , Ky and Kz  is obtained, 

respectively. Therefore, in this paper the 

exciting stiffness model with the use of 

FEM simulation has been further improved 

to include effect of cantilever geometry. 

With the use of presented model, it is 

possible to predict the stiffness coefficients 

( Kx , Ky  and Kz ) for a deviation of X 

between 0 to 50 m . The developed model 

enables us to predict stiffness coefficients 

for a wide range of commercial 

cantilevers. The developed model shows 

acceptable consistency (less than 1.5 % 

deviation) and enables us to model 

stiffness coefficient precisely. 
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