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Abstract 

Many of nonlinear systems in the field of engineering such as nano-resonator and atomic force 

microscope can be modeled based on Duffing equation. Analytical frequency response of this 

system helps us analyze different interesting nonlinear behaviors appearing in its response due 

to its rich dynamics. In this paper, the general form of Duffing equation with cubic 

nonlinearity as well as parametric excitations is considered and its frequency response is 

derived utilizing Homotopy Analysis Method (HAM) for the first time. Although time response 

of different Duffing systems has been analyzed using HAM, derivation of its frequency 

response equation by applying this powerful method has not been presented. The main 

advantage of proposed simple closed-form solution is that it is not restricted to weakly 

nonlinear systems in contrast with perturbation methods. Because of numerous applications of 

Micro-electro-mechanical resonator and its rich and nonlinear dynamics, it is considered as a 

case study in this paper and the obtained analytical equation is applied to find its frequency 

response. The validation of analytical method is verified by comparing the results with 

numerical simulations. It is also shown that proposed closed-form equation for nano-

resonator frequency response can capture both hardening and softening behavior of nano-

resonator as well as jump phenomenon. The results of this paper can be useful in analysis of 

different engineering systems modeled by general Duffing equation. 

Keywords: Duffing equation, Frequency response, Homotopy analysis method, Nano-

resonators. 
 

1. INRODUCTION 

 

Nonlinear vibrating models have been 

widely used in different fields of 

engineering and are of significant 

importance in mechanical dynamics for the 

comprehensive analysis and accurate 

prediction of response of systems. The 

Duffing equation characterizes the class of 

vibrating systems with cubic 

nonlinearities. Due to its rich dynamics, it 

shows a wide variety of nonlinear 

phenomena such as bi-stability, chaotic 

motion and jump phenomenon in which 

the steady state response of system jumps 

from one stable solution to another stable 

one. The analysis of this low-order 

nonlinear system can be helpful in the 
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development of reduced order models of 

complex mechanical systems ranging from 

micro-scales to macro-scales (Schuster, 

2008; Shaw and Balachandran, 2008) 

   Frequency response of a nonlinear 

system can reveal its different nonlinear 

behaviors such as hardening and softening 

behaviors, bi-stability and jump 

phenomenon(Miandoab et al., 2014b). 

There are many approaches for 

approximating frequency response of 

Duffing system. The most common and 

most widely used methods of them are the 

perturbation methods such as Multiple 

scales (Caruntu and Luo, 2014), averaging 

(Fahsi and Belhaq, 2009) and lindested-

poincare methods(Chen and Cheung, 

1996). These methods involve the 

expansion of a solution for a differential 

equation in the series of powers of the 

small parameter and the main drawback of 

them is that they can only be used for 

weakly nonlinear systems. 

   One of the other powerful methods to 

approximate the frequency response of 

nonlinear systems is Volterra series 

approach (Worden and Manson, 1998). 

The analytical approximations based on 

the Volterra series are in good agreement 

with numerical simulations but because of 

two main reasons it is less impressive. 

First, it is difficult to estimate how many 

terms of the series are needed to guarantee 

the series converge and the second is the 

complexity and growing of the calculation 

by increasing the term order (Lang et al., 

2007; Worden and Tomlinson, 2010). 

   Lio (Liao, 2003) developed the 

Homotopy Analysis Method (HAM) which 

is a powerful method to solve highly 

nonlinear equations. Unlike other methods, 

this method does not depend on any 

assumptions of small parameter and HAM 

can guarantee convergence of the series 

solution by introducing a convergence-

control parameter (Liao, 2012). Although 

HAM has been widely implemented in the 

literature for analysis of time response of 

various highly nonlinear problems 

(Abbasbandy, 2006; Van Gorder and 

Vajravelu, 2008; Tajaddodianfar et al., 

2015), derivation of nonlinear frequency 

response of system using this method has 

not been presented in the literature until 

now. Frequency response of nonlinear 

system reveals its rich dynamics such as 

hardening, softening, jump and bi-stability. 

Since the equation of motion of many 

mechanical systems ranging from 

automotive belt-pulley system (Michon et 

al., 2008) to Atomic force microscope 

(Pishkenari et al., 2008) and 

MEMS/NEMS systems (Miandoab et al., 

2014c) leads to parametrically actuated 

Duffing equation, this model is considered 

in this study and its analytical frequency 

response is approximated using Homotopy 

Analysis Method.  

   MEMS resonators are one of the most 

commonly used components for various 

applications from accelerometers to 

communication and signal processing 

devices (Tocchio et al., 2012; Hajjam and 

Pourkamali, 2012). Typically these 

systems include one movable electrode 

excited by DC and AC voltages applied on 

one or both sides. Different nonlinearity 

sources such as mid-plane stretching, 

squeezing film damping and nonlinear 

coupling between electrostatic force and 

resonator displacement lead to nonlinear 

behavior of resonators such as frequency 

response curve bending, jump 

phenomenon and chaotic motion (Ghayesh 

et al., 2013). Deriving the analytical 

frequency response of resonators reveals 

different nonlinear behaviors of these 

systems. For example, Maani Miandoab et 

al. have recently showed that analytical 

frequency response of multi-well potential 

systems can be utilized to accurate 

prediction of chaos in these systems 

(Miandoab et al., 2014a). 

   MEMS resonator under combined AC 

and DC actuations is considered as the 

case study and proposed closed form 

analytical frequency response is used to 

obtain its frequency response. Comparing 

the results with numerical simulations 

illustrates best agreement. In section 2, we 
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introduce the implementation of Homotopy 

Analysis Method to parametric Duffing 

equation. Section 3 contains the Derivation 

of MEMS resonator equation and 

comparison of the analytical and numerical 

results.  The paper ends with conclusions 

drawn from our research in section 5. 
 

2. FREQUENCY RESPONSE BY 

THE HAM  
 

In this section, we aim to derive analytical 

solution for the response amplitude of 

forced oscillatory behavior of a system 

having cubic nonlinearities: 

 
2

2 3

2

2 3

0 1 2 3(r r u r u r u )cos

d u du
u u

d d

R

 

 

(1) 

 

Where  denotes the linear natural 

frequency of the system. Liao has already 

proposed and developed the fundamentals 

of the Homotopy Analysis Method (HAM) 

(Liao, 2003; Liao, 2009). Here, we 

implement this technique to derive 

approximate solution for the response 

amplitude of a forced oscillator governed 

by Eq. 1. Regarding the harmonic 

excitation of the system, we suppose that 

the response of the oscillator is possible to 

be expressed in the form of a convergent 

series: 
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Where kU  and 
kU
 
represent two complex 

conjugate constants. This assumption is 

known as the “rule of solution expression” 

in the homotopy analysis method [1]. 

According to the well-known HAM 

procedure, we propose a parameter 

[0,1]p  and a variation 

( , ) : [0,1]p such that ( ,p) 

matures from a primary guess 

0( ,0) ( )u    to the exact solution 

( ,1) ( )u   , as p  continuously varies 

from 0 to 1. Regarding hypothesized series 

solution 2, we can select an appropriate 

initial guess: 

 

0( ) Uei iu Ue     (3) 

 

Then, we can define a differential operator 

called the “auxiliary linear operator” in the 

HAM approach: 
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which satisfies the condition below: 
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(5) 

 

Then, using Eq. 1, the following nonlinear 

operator is proposed: 
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The zeroth-order deformation equation, as 

a basic equation in the HAM procedure, is 

defined using a further auxiliary parameter 

known as the convergence-control 

parameter, 0c  :  
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We suppose a Maclaurin series in p  exists 

such that it converges to the variation 

( ,p) using the deformation derivatives 

( )ku  given as below: 
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However, the deformation derivatives, and 

consequently the series solution for 
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( ,p) , are found by solving the 

following k-th order deformation equations 

[1]: 
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However, using initial guess of Eq 3 

together with Eqs. 10, 11 and 12, we are 

left with the following equation for 1( )u 
 : 
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In order to prevent unbounded terms in the 

solution of the above equation, secular 

terms should be set to zero which yields:  
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Supposing a  and b  to be real parameters 

representing amplitude and phase shift of 

the response, 
1

2

ibU ae  and 
1

2

ibU ae  

are introduced in Eq. 14. Multiplying both 

sides by 
ibe , equating the real and 

imaginary parts of the resulting equation to 

zero, and pursuing the simple 

trigonometric calculations, we are left with 

the following equation for the frequency 

response of the oscillator: 
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Regarding the Eq. 1, all parameters are 

known in Eq. 15 with . Thus, one 

can solve Eq. 15 for the unknown a  

describing the amplitude of the vibrations. 

This result is validated through a case 

study in the next section.  

 

3. CASE STUDY: 

 MEMS RESONATOR 

 

Figure1 shows a micro-electro-

mechanical-resonator under electrostatic 

actuation. 

 

 
Figure1. Schematic of an electrostatically 

actuated micro resonator. 

 

As can be seen in Figure1, the resonator is 

composed of two fixed and one movable 

electrode. A DC load is applied to the 

middle movable electrode while one of the 

fixed electrodes is under harmonic AC 

actuation. This combination of loadings 

makes an oscillatory system with a bias 

DC and harmonic AC voltage. Different 

nonlinearities in this system such as 

electrostatic force and mid-plane stretching 

may lead to interesting nonlinear behaviors 

such as frequency response bending, jump 

phenomenon and chaotic vibration which 

affect the performance of this device and is 

important in design, analysis and 

fabrication of nano-resonators. Closed 

form frequency response of these systems 

is a fast and useful method to analyze these 

behaviors in comparison with numerical 

methods which are time consuming.  Thus, 

in this section, HAM will be used to 

analyze the frequency response of this 

system and its validation will be verified 

by comparing the results with numerical 

ones. By considering the movable 

electrode as double clamped micro-beam, 

the governing equation of the micro-

resonator can be written as follows 
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(Ouakad and Younis, 2012; Younis and 

Nayfeh, 2003), where we assumed Euler-

Bernoulli beam model. 
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(6) 

 

In the above equation, the parameters E , 

A , , I , , N , g  and w  are 

respectively the micro-beam Young’s 

modulus, its cross-sectional area, material 

density, moment of inertia, air dielectric 

constant, the applied axial force, the gap 

distance between the two electrodes and 

the beam deflection which is a function of 

the axial position, x , as well as time, t .  

To start tackling the resolution of Eq. 16, it 

is more convenient to use the following 

non-dimensional parameters  

 

ˆˆ ˆ; ;
x w t

x w t
l g T

 (17) 

 

Substituting 17 in 16 results in: 
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Where: 
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The boundary conditions corresponding to 

double clamped micro-beam are given as 

follows: 
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Based on the separation of variables 

technique, the solution of Eq. 3 can be 

approximated as in the following form: 
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Where, ˆ( )x is the first mode shape of the 

double clamped beam. The governing 

differential equation of ˆ( )u t  is derived by 

substituting Eq. 6 into Eq. 3 and using the 

Galerkin’s decomposition (Ouakad and 

Younis, 2014; Ouakad, 2013). 
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Where: 
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And where: 
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To find the lumped force applied on the 

micro-resonator, in (Miandoab et al., 

2014b) it was supposed that the nonlinear 

integral function is possible to be 

approximated by a function having known 

structure: 
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The unknown parameters were found using 

Genetic Algorithm as: 
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0 0.8309

 
1 1.5837  

2 1.5196 . 

(26) 

 

By introducing 1 t̂ and 

implementing the obtained 

approximations, Eq. 22 reduces to: 
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With the parameters described below:  
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In order to convert the governing Eq. 27 to 

the general form given by the Eq. 1, the 

nonlinear terms of Eq. 27 are expanded 

based on the Taylor series expansion 

method (Ouakad and Younis, 2010). 

Analysis of the obtained results confirms 

that expansion up to the 3
rd

 order provides 

sufficient accuracy. Expanding the 

nonlinear terms leads to the following 

equation: 

 
3

2 3

0

(1 4 ) ( 14.825 )

(0.831 2 4 7.413 )cos( )

u u u u

A Au Au Au  
 

(28) 

 

Thus, the parameters in the frequency 

response solution given by Eq. 15 are 

verified as follows: 
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(29) 

Numerical simulations are needed to 

validate the analytical frequency response, 

given by Eq. 15 with the parameters 

mentioned above. To this aim, for known 

values of parameters, Eq. 27 is integrated 

numerically to obtain the steady state 

amplitude of the response. Then, the 

frequency of actuation, 0  , is increased 

and the integration is repeated to derive the 

steady state response amplitude. After 

completing the forward frequency sweep, 

the frequency path is reversed and the 

backward frequency sweep is completed. 

At each step, the final state of the system is 

used as the initial state of the system at the 

next step. Figure 2, compares the obtained 

numerical and analytical results. 

 

(a)

 

(b)

 
Figure2. Numerical frequency response of the MEMS resonator with the results of the HAM 

solution for a) 0.01,A 0.2, 11, 0.05  and b) 0.01,A 0.15, 4,

0.1 
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Figure 2 confirms the good agreement 

between the results of the numerical 

simulations and those given analytically by 

Eq. 15. This not only validates the 

analytical solution for the resonator’s 

frequency response given by the 

Homotopy Analysis Method, but also 

justifies the 3
rd

 order expansions of 

nonlinear terms in Eq. 27 to reach out 

standard form of Eq. 28. Also, Figure 2 

shows that for various ranges of 

parameters, Eq. 15 accurately predicts the 

response amplitude. Furthermore, no 

small-parameter assumption is employed 

in derivation of HAM-based analytical 

solution. Thus, the obtained HAM solution 

is valid and it can be implemented for the 

analysis of nonlinear dynamics in 

engineering systems under forced 

vibrations and cubic nonlinearities, as in 

the proposed MEMS resonator.  

 

4. CONCLUSION 

 
In this paper, a novel analytical solution is 

presented to frequency response of Duffing 

equation with external parametric 

excitation using Homotopy Analysis 

Method (HAM). The obtained closed form 

equation is simple and it is not restricted to 

weakly nonlinear system. For verification, 

nano-beam under electrostatic actuation is 

considered a case study and comparison of 

analytical results with numerical ones 

showed that proposed analytical frequency 

response can capture both hardening and 

softening behaviors of nano-resonator with 

good accuracy. Since many engineering 

systems can be modeled by Duffing 

equation, the results of this paper can be 

useful in analyzing different engineering 

systems and predicting different nonlinear 

behaviors like hardening, softening, jump 

and chaos. 
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