Synthesis and Characterization of Gold ‎Nanoparticles using Plant Extract of ‎Terminalia arjuna with Antibacterial ‎Activity

Document Type : Research Paper

Authors

1 ‎Department of Biotechnology, Lokmangal Biotechnology College, Wadala, Solapur-413222, ‎India.‎

2 ‎Department of Microbiology, Elphinstone College, Fort, Mumbai-400032, India.‎

3 ‎Department of Zoology, DBF Dayanand College of Arts and Science, Solapur -413002, ‎India.‎

4 ‎DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai-‎‎400019, India.‎

5 ‎Department of Chemistry, SIES College, Sion, Mumbai 400 022, India.‎

Abstract

   The use of plant extracts for nanoparticles synthesis are green, economical and cost effective approach.  The present study reports the bio-synthesis of gold nanoparticles (Au NPs) using leaf extract of Terminalia arjuna. After exposing the gold ions to aqueous solution of leaf extract, rapid reduction of gold ions into gold nanoparticles is observed within few minutes. The characterization of biosynthesized Au NPs were carried out by ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) techniques. UV-visible spectrum of the aqueous medium containing gold nanoparticles showed a peak of 530 nm. TEM analysis was performed to examine the size and shape of the biosynthesized gold nanoparticles. TEM analysis indicated that gold nanoparticles were well dispersed and ranged between 15 to 30 nm in size. Antibacterial activity of the biosynthesized Au NPs was studied against common human pathogens such as Staphylococcus aureus (NCIM 5021), Pseudomonas aeruginosa (NCIM 5029), and Salmonella typhimurium (NCIM 2501) by agar well diffusion method. This method exploits the economical and greener approach for the synthesis of metallic nanoparticles.

Keywords


  1. Mohanpuria, P., Ran, K. N., Yadav, S. K. (2008). “Biosynthesis of nanoparticles technological concept and future applications”, J. Nanopart. Res., 10: 507–517.
  2. Alric, C., Taleb, J., Le Duc, G., Mandon, C., Billotey, C., Meur-Herland, A. L., Brochard, T., Vocanson, F., Janier, M., Perriat, P., Roux, S., Tillement, O. (2008). “Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging”, J. Am. Che. Soc., 138: 5908–5915.
  3. Cail, W., Gao, T., Hong, H., Sun, J. (2008). “Applications of gold nanoparticles in cancer nanotechnology”, Nanotechnol. Sci. Appl., 1: 17–32.
  4. Ghosh, P., Han, G., De, M., Kim, C. K., Rotello, V. M. (2008). “Gold nanoparticles in delivery applications”, Adv. Drug Deliv. Rev., 60: 1307–1315.
  5. Rao, C. N. R., Muller, A., Cheetham, A. K. (2004). “The Chemistry of Nanomaterials: Synthesis. Properties and Applications”, Wiley-VCH, Weinheim, 1–11.
  6. Moreno-Álvarez, S. A., Martínez-Castañón, G. A., Niño-Martínez, N., Reyes-Macías, J. F., Patiño-Marín, N., Loyola-Rodríguez, J. P., Ruiz, F. (2010). “Preparation and bactericide activity of gallic acid stabilized gold nanoparticles”, J. Nanopart. Res., 12: 2741–2746.
  7. LaVan D. A., McGuire T., Langer R. (2003). “Small scale systems for in vivo drug delivery”, Nat. Biotechnol., 21: 1184-1191.
  8. Yuqing, M., Sun, K., Qiu, J., Liu, J. (2009). “Preparation and characterization of gold nanoparticles using ascorbic acid as reducing agent in reverse micelles”, J. Mater. Sci., 44: 754–758.
  9. Mittal, J., Batra, A., Singh, A., Sharma, M. M. (2014). “Phytofabrication of nanoparticles through plant as nanofactories”, Adv. Nat. Sci.: Nanosci. Nanotechnol., 5: 043002.
  10. Malarkodi, C., Annadurai, G. (2012). “A novel biological approach on extracellular synthesis and characterization of semiconductor zinc sulfide nanoparticles”, Appl. Nanosci., 3: 389-395.
  11.  Gnanajobitha, G., Annadurai, G., Kannan, C. (2012). “Green synthesis of gold nanoparticle using Elettaria cardamomom and assesment of its antimicrobial activity”, Int. J. Pharma Sci. Res., 3: 323–330.
  12.  Rajeshkumar, S., Kannan, C., Annadurai, G. (2012). “Synthesis and characterization of antimicrobial gold nanoparticles using marine brown seaweed Padina tetrastromatica”, Drug Invention Today, 4: 511-513.
  13. Husseiny, M. I., El-Aziz, M. A., Badr, Y., Mahmoud, M. A. (2007). “Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa”, Spectrochim. Acta, 67: 1003−1006.
  14.  Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Parishcha, R., Ajaykumar, P. V., Alam, M., Kumar, R., Sastry, M. (2001). “Fungus-mediated synthesis of gold nanoparticles and their immobilization in the mycelia matrix: A novel biological approach to nanoparticles synthesis”, Nano Lett., 1:  515−519.
  15.  Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., Sastry, M. (2003). “Extracellular biosynthesis of monodisperse gold nanoparticles by novel extremophilic actinomycete, Thermomonospora sp.”, Langmuir, 19: 3550−3553.
  16.  Kowshik, M., Arhtaputre, S., Kharrazi, S., Vogel, W., Urban, J., Kulkarni, S. K., Paknikar, K. M. (2003). “Extracellular synthesis of gold nanoparticles by a gold-tolerant yeast strain MKY3”, Nanotechnol., 14: 95−100.
  17.  Shenton, W., Douglas, T., Young, M., Stubbs, G. (1999). “Mann, Inorganic−organic nanotube composites from template mineralization of tobacco mosaic virus”, Adv. Mater., 11: 253−256.
  18. Ojo, S. A., Lateef, A., Azeez, M. A., Oladejo, S. M., Akinwale, A. S., Asafa, T. B., Yekeen, T. A., Akinboro, A., Oladipo, I. C., Gueguim-Kana, E. B., Beukes, L. S. (2016). “Biomedical and catalytic applications of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of Bacillus safensis LAU 13: antifungal, dye degradation, anti-coagulant and thrombolytic activities”, IEEE Trans. Nanobiosci., 15: 433-442.
  19. Oladipo, I. C., Lateef, A., Elegbede, J. A., Azeez, M. A., Asafa, T. B., Yekeen, T. A., Akinboro, A., Gueguim-Kana, E. B., Beukes, L. S., Oluyide, T. O. Atanda, O. R. (2017). “Enterococcus species for the one-pot biofabrication of gold nanoparticles: characterization and nanobiotechnological applications”. J. Photochem. Photobiol., B., 173: 250-257.
  20. Adelere, I. A., Lateef, A. (2016). “A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments”. Nanotechnol. Rev., 5: 567-587.
  21. Lateef, A., Ojo, S. A., Elegbede, J. A. (2016). “The emerging roles of arthropods and their metabolites in the green synthesis of metallic nanoparticles”. Nanotechnol. Rev., 5: 601-622.
  22. Harris, A. T., Bali, R. (2008). “On the formation and extent of uptake of gold nanoparticles by live plants”, J. Nanopart. Res., 10: 691−695.
  23. Thakkar, K. N., Mhatre, S. S., Parikh, R. Y. (2010). “Biological synthesis of metallic nanoparticles”, Nanomed., 6: 257−262.
  24. Iravani, S. (2011). “Green synthesis of metal nanoparticles using plants”, Green Chem., 13: 2638−2650.
  25.  Shankar, S. S., Rai, A., Ahmad, A., Sastry, M. (2004). “Rapid synthesis of Au, Ag, and bimetallic Au core−Ag shell nanoparticles using neem (Azadirachta indica) leaf broth”, J. Colloid Interface Sci., 275: 496−502.
  26.  Jha, A. K., Prasad, K., Kulkarni, A. R. (2009). “Plant system: nature’s nano factory”, Colloids Surf. B, 73: 219−223.
  27.  Dudhane, A. A., Waghmode, S. R., Bhosale, M. A., Mhaindarkar, V. P. (2017). “Caesalpinia pulcherrima mediated green synthesis of silver nanoparticles: evaluation of their antimicrobial and catalytic activity”, Int. J. Nanopart., 9: 153-165.
  28. Bhattacharya, D., Gupta, R. K. (2005). “Nanotechnology and potential of microorganisms”, Crit. Rev. Biotechnol., 25: 199−204.
  29. Mandal, D., Bolander, M. E., Mukhopadhyaya, D., Sarkar, G., Mukherjee, P. (2006). “The use of microorganism for the formation of metal nanoparticles and their applications”, Appl. Microbiol. Biotechnol., 69: 485−492.
  30.  Shankar, S. S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A., Sastry, M. (2004). “Biological synthesis of triangular gold nanoprisms”, Nat. Mater., 3: 482−488.
  31.  Gopinath, K., Venkatesh, K. S., Ilangovan, R., Sankaranarayanan, K., Arumugam, A. (2013). “Green synthesis of gold nanoparticles from leaf extract of Terminalia arjuna, for the enhanced mitotic cell division and pollen germination activity”, Ind. Crops Prod., 50: 737-742.
  32. Gopinath, K., Gowri, S., Karthika, V., Arumugam, A. (2014). “Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superb”. J. Nanostruct. Chem., 4: 115.
  33. Singh, J., Kumar, S., Rathi, B., Bhrara, K., Chhikara, B. S. (2015). “Therapeutic analysis of Terminalia arjuna plant extracts in combinations with different metal nanoparticles”. Mater.  NanoSci., 2: 1-7.
  34. Ahmed, Q., Gupta, N., Kumar, A., Nimesh, S. (2017). “Antibacterial efficacy of silver nanoparticles synthesized employing Terminalia arjuna bark extract”. Artif. Cells Nanomed. Biotechnol., 45: 1192-1200.
  35. Kasthuri, J., Kathiravan, K., Rajendiran, N. (2009). “Phyllanthin-assisted biosynthesis of gold and gold nanoparticles: a noval biological approach”, J. Nanopart. Res., 11: 1075−1085.
  36. Shankar, S. S., Ahmad, A., Pasricha, R., Sastry, M. (2003). “Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes”, J. Mater. Chem., 13: 1822−1826.
  37.  Shankar, S. S., Ahmad, A., Sastry, M. (2003). “Geranium leaf assisted biosynthesis of gold nanoparticles”, Biotechnol. Prog., 19: 1627−1631.
  38. Lateef, A., Ojo, S. A., Folarin, B. I., Gueguim-Kana, E. B., Beukes, L. S. (2016). “Kolanut (Cola nitida) mediated synthesis of silver–gold alloy nanoparticles: Antifungal, catalytic, larvicidal and thrombolytic applications”. J. Cluster Sci., 27: 1561-1577.
  39. Lateef, A., Ojo, S. A., Elegbede, J. A., Akinola, P. O., Akanni, E. O. (2018). “Nanomedical Applications of Nanoparticles for Blood Coagulation Disorders”. In Environ. Nanotechnol. (Pp. 243-277). Springer, Cham.
  40.  Ghosh, S., Patil, S., Ahire, M., Kitture, R., Gurav, D. D., Jabgunde, A. M., Kale, S., Pardesi, K., Shinde, V., Bellare, J. Dhavale, D. D. (2012). “Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential”. J. Nanobiotechnol., 10: 17.
  41. Pal, S., Mondal, S., Maity, J., Mukherjee, R. (2018). “Synthesis and Characterization of ZnO Nanoparticles using Moringa Oleifera Leaf Extract: Investigation of Photocatalytic and Antibacterial Activity”, Int. J. Nanosci. Nanotechnol., 14: 111-119.
  42. Ahmed, S., Ahmad, M., Swami, B. L., Ikram, S. (2016). “A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise”, J. Adv. Res., 7: 17–28.
  43. Ahmed, S., Ikram, S. (2015). “Silver nanoparticles: one pot green synthesis using Terminalia arjuna extract for biological application”, J. Nanomed. Nanotechnol., 6: 309.
  44. Suganthy, N., Ramkumar, V. S., Pugazhendhi, A., Benelli, G., Archunan, G. (2017). “Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects”, Environ. Sci. Pollut. Res., 25: 1-16.
  45. Biswas, M., Biswas, K., Karan, T. K., Bhattacharya, S., Ghosh, A. K., Haldar, P. K. (2011). “Evaluation of analgesic and anti-inflammatory activities of Terminalia arjuna leaf”, J. Phytology, 3: 33–8.
  46. Hadi, S. M., Bagherieh-Najjar, M. B., Kohan B. E., Mianabadi, M. (2018). “Ag-Conjugated Nanoparticle Biosynthesis Mediated by Rosemary Leaf Extracts Cor-rlates with Plant Antioxidant Activity and Pro-tein Content”. Int. J. Nanosci. Nanotechnol., 14: 319-325.
  47. Pal, S., Mondal, S., Maity, J., Mukherjee, R. (2018). “Synthesis and characterization of ZnO nanoparticles using Moringa oleifera leaf extract: Investigation of photocatalytic and antibacterial activity”. Int. J. Nanosci. Nanotechnol., 14: 111-119.
  48.  Mohamed, M. M., Fouad, S. A., Elshoky, H. A., Mohammed, G. M., Salaheldin, T. A. (2017). “Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis”. Int. J. Vet. Sci. Med., 5: 23-29.